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Abstract: The Alzheimer’s Disease Neuroimaging Initiative (ADNI) contains extensive patient
measurements (e.g., magnetic resonance imaging [MRI], biometrics, RNA expression, etc.) from
Alzheimer’s disease (AD) cases and controls that have recently been used by machine learning
algorithms to evaluate AD onset and progression. While using a variety of biomarkers is essential
to AD research, highly correlated input features can significantly decrease machine learning model
generalizability and performance. Additionally, redundant features unnecessarily increase computa-
tional time and resources necessary to train predictive models. Therefore, we used 49,288 biomarkers
and 793,600 extracted MRI features to assess feature correlation within the ADNI dataset to determine
the extent to which this issue might impact large scale analyses using these data. We found that
93.457% of biomarkers, 92.549% of the gene expression values, and 100% of MRI features were
strongly correlated with at least one other feature in ADNI based on our Bonferroni corrected α

(p-value ≤ 1.40754 × 10−13). We provide a comprehensive mapping of all ADNI biomarkers to
highly correlated features within the dataset. Additionally, we show that significant correlation
within the ADNI dataset should be resolved before performing bulk data analyses, and we provide
recommendations to address these issues. We anticipate that these recommendations and resources
will help guide researchers utilizing the ADNI dataset to increase model performance and reduce the
cost and complexity of their analyses.

Keywords: ADNI; pairwise feature correlation; feature reduction; machine learning; Alzheimer’s disease

1. Introduction

Researchers increasingly leverage big data techniques, such as machine learning, to
identify patterns indicative of disease trajectory to better understand, diagnose, and treat
Alzheimer’s disease (AD). This search for a cure has led to ever-expanding datasets that
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have increased in both size and complexity [1]. Although AD is a progressive neurodegen-
erative disorder characterized by the “A/T/N” system (i.e., β-amyloid biomarker buildup,
tau biomarker buildup, and neurodegeneration or neuronal injury) [2], heterogeneity in
disease manifestation and trajectory impact our ability to accurately diagnose or treat
AD [3,4]. However, since AD is the most common cause of dementia [5], and related
AD health-care costs are projected to exceed $1 trillion by 2050 [6], it is imperative to
leverage large biobanks to best define its etiology and search for a cure. Here, we utilize the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset, which contains patient data
for AD cases and controls spanning 49,288 biomarkers and 1.2 terabytes of neuroimages.

While large biological datasets, such as the ADNI cohort, are crucial for developing
accurate models, an excessive number of features can cause algorithms to take more time to
compute [7–9], require significantly more computational resources [9–11], increase model
complexity [9], reduce model performance [12], and ultimately increase the costs of large-
scale analyses. These issues often make these types of analyses intractable for smaller
research labs with limited computational resources. Researchers typically sidestep the
issue by reducing their analyses to a pre-selected subset of features based on literature
searches or specific hypotheses, which limits the creative exploration of other features
included in the dataset. Programmatic solutions to feature selection also exist [13] but
require a pairwise correlation analysis to identify redundancy [14]. Pairwise correlation
analyses iteratively calculate the correlation between each feature and all other feature in
the dataset [15]. When multiple features are highly correlated with each other, one feature
can be used as representative of all other features, which effectively reduces the size of the
dataset for downstream analyses.

We assessed correlation within the ADNI dataset to determine the extent to which
machine learning might be impacted by correlated features. We performed a pairwise
correlation analysis of all 49,288 biomarkers and 793,600 extracted magnetic resonance
imaging (MRI) features (842,888 total features). We repeated the pairwise correlation
analysis using subsets stratified by sex and clinical dementia rating (CDR) to determine
if the correlated features should be interpreted broadly (i.e., across the dataset) or more
narrowly (e.g., only in females). We identified high feature redundancy that impacts
99.566% of all features, including 93.457% of the ADNIMERGE features and 92.549% of
the gene expression features. Additionally, we identified metadata in the ADNI tables
that were not programmatically distinguishable from biomarkers, and several duplicate
features with different column headers.

We propose that machine learning on the ADNI dataset should remove highly corre-
lated or duplicate features and metadata to increase model performance, decrease model
training time, and accelerate AD research toward improved understanding, diagnosis,
and treatment. We provide correlation tables to facilitate the identification and filtering of
highly correlated features within ADNI.

2. Materials and Methods

Data used in the preparation of this article were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu) on 15 November
2019. The ADNI was launched in 2003 as a public-private partnership, led by principal
investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether
serial magnetic resonance imaging (MRI), positron emission tomography (PET), other
biological markers, and clinical and neuropsychological assessment can be combined
to measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s
disease (AD). For up-to-date information, see www.adni-info.org. ADNI researchers collect,
validate, and utilize data, including MRI and PET images, genetics, cognitive tests, CSF
and blood biomarkers as predictors of the disease.

We divided the ADNI data into three domains: the ADNIMERGE domain, which
contains features such as cerebral spinal fluid (CSF) biomarkers and cognitive function
test scores; the gene expression domain, which contains gene expression levels from

www.adni-info.org


Genes 2021, 12, 1661 3 of 12

blood microarrays [16]; and the MRI domain, which contains features we extracted from
MRIs using deep convolutional autoencoders. Step-by-step protocols for each domain are
included at https://github.com/jmillerlab/ADNI_Correlation and described below.

2.1. ADNIMERGE Domain

We constructed the ADNIMERGE domain using the R package, ADNIMERGE [17].
We retrieved the data from ADNIMERGE because it contains the ADNI tabular data in
the form of multiple individual tables conveniently stored within a single package. To effi-
ciently merge these data, we developed a custom method for combining the ADNIMERGE
tables into one table by joining each table by its patient ID and most recent measurement
(see Figure S1).

We preprocessed all tables in the ADNIMERGE domain before combining them. We
capitalized all headers to have consistent feature names across tables with overlapping
features. Columns with only one unique value were removed because features without
variation are uninformative in machine learning. Every feature table contained patient IDs
that we used as primary keys when combining tables. We removed the ‘Data Dictionary’
table from the domain because it contained only meta-data and no patient IDs. We recorded
the data type of each feature, whether nominal or numeric, to determine which statistical
tests to apply in downstream analysis. All features containing number values were marked
as numeric unless they contained fewer than ten unique values, in which case they were
considered nominal. Features containing text were marked as nominal. However, if those
values contained more than 20 unique values, they were removed from the ADNIMERGE
domain to eliminate features that were unique or almost unique for the individual, which
might occur when the features are unique identifiers or notes written by the data recorders.

We further cleaned the data so that every feature had a single value for each individual.
For features that contained longitudinal data, we selected the most recent value using its
recording date. If the recording dates were not available, we arbitrarily selected one value
for the person. If an individual did not have a value for a certain feature, we marked it as
unknown. We removed features that either contained only unknown values or only one
unique value because those features are uninformative in machine learning. The resulting
table contained rows corresponding to each person, and columns corresponding to each
ADNIMERGE feature.

Lastly, we resolved unknown values by either removing or imputing them. Features
with fewer than 80% known values were removed to ensure accuracy. Nominal features
with fewer than 20 patients in any of their categories were also removed as these features
did not meet the assumptions of our statistical tests. Numeric values were then imputed
using a Bayesian-ridge estimator [18] that predicts unknown values for numeric features
based on known values of other features. The random number generator for this stochas-
tic algorithm was seeded for reproducibility. A simple imputer was used for unknown
nominal values, which replaced unknown values with the most frequent known cate-
gory. These imputing algorithms were provided by the Scikit-learn Python package [19].
The completed ADNIMERGE data set contained 1131 features.

2.2. Gene Expression Domain

We downloaded the gene expression domain from ADNI, which contains a table of
gene expression profiles from blood RNA and has previously been explored using machine
learning [16]. All quality control and normalization were conducted by ADNI before its
inclusion in the dataset. We transposed the table so that feature columns corresponded
to the normalized gene expression levels for each patient. Any columns that contained
metadata or did not contain a header were removed. The resulting gene expression domain
contained a total of 48,157 genes.

https://github.com/jmillerlab/ADNI_Correlation
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2.3. MRI Domain

The MRI domain contained features we extracted from MRIs using deep convolu-
tional autoencoders designed and trained using the PyTorch deep learning library [20].
All features in this dataset were numeric transformed pixel values. The image dataset
initially consisted of 1.2 terabytes of MRIs, but we used only MRIs that belonged to the 743
patients also found in both the ADNIMERGE and gene expression domains. We organized
these MRIs using the PyDicom Python package [21] so that each patient had a sequence of
MRI images scanned from one side of the skull to the other. We used the med2image [22]
Python package to convert the MRIs from DICOM format to PNG so that they could be
used in deep learning. All images were resized to 128 by 128 pixels using the OpenCV
Please confirm that the intended meaning has been retained.ython package [23]. Image
pixel values were then normalized using min-max normalization [24] to optimize them for
the deep learning model.

Each patient had a sequence of 124 sagittal MRI slices. Each of those two-dimensional
images were compressed to a one-dimensional latent space of 6,400 extracted features.
By storing images in one-dimensional arrays, the MRI domain could be tabular and
therefore merged with the other two domains. We trained separate autoencoders for
each of the 124 slice indices of the MRI sequences across all the patients using the Adam
optimizer for artificial neural networks [25] (See Figure S2). The 124 latent vectors for each
individual were concatenated for a total of 124 × 6400 = 793,600 extracted MRI features
per person. These concatenated MRI features acted as the rows in the MRI domain (see
Figure 1). We seeded all random number generators for reproducibility since the model
training algorithms are stochastic in nature.
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Figure 1. Creation of the MRI domain from the MRI slice sequences using the trained convolutional
autoencoders. A separate autoencoder was trained for each MRI slice, and the latent space was
concatenated for each person to create a row specific to that individual.

2.4. Combining All Domains

We merged the ADNIMERGE, gene expression, and MRI domains into a singular
dataset that we used for our correlation analysis. The combined dataset contained a total of
1131 ADNIMERGE features + 48,157 gene features + 793,600 MRI features = 842,888 features
for 743 individuals.

2.5. Correlation Analysis

We performed a pairwise correlation analysis where we compared every feature in our
dataset to every other feature. For each comparison, we chose a statistical test depending on
the data types of the two features as well as the normality of their distribution, if numeric
(See Table 1).
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Table 1. Statistical tests chosen for comparisons and their conditions.

Comparison Data Types Condition Statistical Test

Numeric and Numeric Both features follow a normal distribution Pearson correlation
Numeric and Numeric At least one of the features does not follow a

normal distribution Spearman correlation

Categorical and Categorical The contingency table contains at least one
frequency less than five N/A

Categorical and Categorical All frequencies in the contingency table are
greater than or equal to five Chi-squared

Numeric and Categorical All categories have a normal distribution ANOVA
Numeric and Categorical Not all categories have a normal distribution Kruskal-Wallis

For numeric features, depending on the normality of their distribution, we chose between a parametric (normal
distribution) or a non-parametric (non-normal distribution) statistical test. If both features were nominal, we used
the Chi-squared test unless the contingency table resulting from the two features did not each contain at least five
instances. In that case, the test was not performed.

The statistical tests and the test for normality [26] were conducted using the SciPy
Python package [27]. Because we analyzed all pairwise comparisons (excluding self-
comparisons) of m features across n individuals, the big-O time complexity of our algorithm
was O(n ∗ m2). However, we optimized performance by using parallel processing across
four processing cores. Because of the high number of comparisons (355,229,668,828), we
employed a Bonferroni corrected α value of α = 1.40754 × 10−13 (0.05/355,229,668,828).
Only feature comparisons with significant p-values were stored to save disk space.

2.6. Subset Stratification Analysis

Feature correlation within the entire dataset may occur if a subset of individuals
determine that correlation. Therefore, we determined if the significantly correlated fea-
tures were also correlated in different subsets stratified by sex (e.g., male or female) and
clinical dementia rating (CDR; e.g., 0, 0.5, ≥1) [28]. Sex-specific AD pathologies occur [29],
and pathologies vary based on cognitive status [29]. Additionally, if disease-modifying
treatments in AD cases affect feature correlation, the features would not be correlated in
all subsets. Therefore, if the features remain correlated in the complete dataset and each
stratified subtype, they can be considered redundant.

We created five subsets from the combined dataset: female patients, male patients,
cognitive normal controls where CDR = 0, patients with mild cognitive impairment where
CDR = 0.5, and patients with AD where CDR ≥ 1.0. Next, we identified correlations with
the highest possible significance (p-value ≤ 5 × 10−324, which is the smallest positive value
in Python 3.7) from the original analysis of the combined dataset. We reran those correlation
analyses within each of the five subsets to determine if certain stratifications affected the
correlation significance. We noted that significance will drop due to smaller sample size
in the comparison and some features were dropped from the analysis (e.g., features with
only one unique value in the subset). In practice, only the AD subset experienced loss of
significant comparisons as a result of sub-setting.

3. Results

We found that 839,226 ADNI features (99.566% of the total number of features) are sig-
nificantly correlated with at least one other feature (93.457% of the ADNIMERGE features,
92.549% of the gene expression features, and 100% of the MRI features). Table 2 shows a
subset of features that are correlated at the highest significance threshold with more than
one other feature, including patient sex, intra-cranial volume, various neuropsychological
batteries, ventral diencephalon volume, and cerebrospinal fluid (CSF) glucose levels.
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Table 2. ADNIMERGE Features that are Highly Correlated with other Features.

Feature Name ADNIMERGE
Frequency

Gene Expression
Frequency MRI Frequency Total Frequency

PTGENDER 207 281 145,780 146268
ICV 265 84 143,377 143,724

CLOCKNUM 199 0 97,725 97,924
COPYTIME 243 0 97,030 97,228
CLOCKSYM 216 0 96,307 96,523

ST65SV 191 46 81,250 81,487
GLUCOSE 155 0 81,245 81,400

Numbers of correlated features for seven example features in the ADNIMERGE domain. The ‘Feature Name’
is the column header as it appeared in our constructed tabular data set. The ‘ADNIMERGE Frequency’ is the
number of ADNIMERGE features that are highly correlated with the feature. For example, intra-cranial volume
(ICV) is correlated with 265 other ADNIMERGE features. It is likewise correlated with 84 gene expression levels
and 143,377 extracted MRI features. The ‘Total Frequency’ is the sum of the ‘ADNIMERGE Frequency’, ‘Gene
Expression Frequency’, and ‘MRI Frequency’. In other words, it is the total number of features that are highly
correlated with each row across the entire ADNI data set.

While Table 2 shows the numbers of correlated features for seven example features
from the ADNIMERGE domain, Table S1 shows the same but for all the ADNIMERGE
features. Both Table 2 and Table S1 show the numbers of correlated features based on our
Bonferroni corrected α (p-value ≤ 1.40754 × 10−13). However, Table S2 shows the numbers
of correlated features based on the maximally significant α (p-value ≤ 5 × 10−324). The
complete table (gene expression and MRI features included in addition to ADNIMERGE)
for the Bonferroni corrected α is available online at: https://github.com/jmillerlab/ADNI
_Correlation/blob/main/data/sig-freqs/bonferroni-sig-freqs.csv.

The complete table for the maximally significant α is available online at: https://github
.com/jmillerlab/ADNI_Correlation/blob/main/data/sig-freqs/maximum-sig-freqs.csv.

While the complete tables containing our results are available online, we provide
a summary of those results in Table 3 (Bonferroni corrected α) and Table 4 (maximally
significant α).

Table 3. Summarized correlated feature frequencies based on the Bonferroni corrected α.

A—ADNIMERGE Frequencies B—Gene Expression Frequencies

Domain Average Standard
Deviation Minimum Maximum Domain Average Standard

Deviation Minimum Maximum

ADNIMERGE 129.49 88.06 1 346 ADNIMERGE 11.91 30.9 0 616
Gene

Expression 0.28 5.52 0 189 Gene
Expression 6139.72 6195.45 1 24,588

MRI 9.31 20.09 0 188 MRI 7.87 19.66 0 149
C—MRI Frequencies D—Total Frequencies

Domain Average Standard
Deviation Minimum Maximum Domain Average Standard

Deviation Minimum Maximum

ADNIMERGE 6988.04 19,170.23 0 145,780 ADNIMERGE 7129.43 19,203.93 1 146,268
Gene

Expression 140.05 3642.09 0 119,556 Gene
Expression 6280.05 7096.48 1 120,141

MRI 141,348.57 69,866.96 81 347,944 MRI 141,365.75 69,873.31 81 347,955
Summary of the numbers of correlated features based on the Bonferroni corrected α. Sections A through D provide summary statistics for
the domain frequencies for ADNIMERGE, Gene Expression, MRI, and Total. For example, the meaning of the ‘Average’ column and ‘MRI’
row in table A is the average number of ADNIMERGE features with which the MRI features are strongly correlated. That row states that
the MRI features are strongly correlated with an average of 9.31 ADNIMERGE features with a standard deviation of 20.9 features. The 0 in
the ‘Minimum’ column indicates that at least one MRI feature is not correlated with any ADNIMERGE features. The 188 under ‘Maximum’
indicates that at least one MRI feature is correlated with 188 ADNIMERGE features when p-value ≤ 1.40754 × 10−13.

https://github.com/jmillerlab/ADNI_Correlation/blob/main/data/sig-freqs/bonferroni-sig-freqs.csv
https://github.com/jmillerlab/ADNI_Correlation/blob/main/data/sig-freqs/bonferroni-sig-freqs.csv
https://github.com/jmillerlab/ADNI_Correlation/blob/main/data/sig-freqs/maximum-sig-freqs.csv
https://github.com/jmillerlab/ADNI_Correlation/blob/main/data/sig-freqs/maximum-sig-freqs.csv
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Table 4. Summarized correlated feature frequencies based on the maximally significant α.

A—ADNIMERGE Frequencies B—Gene Expression Frequencies

Domain Average Standard
Deviation Minimum Maximum Domain Average Standard

Deviation Minimum Maximum

ADNIMERGE 5.48 5.83 1 23 ADNIMERGE 0.0 0.0 0 0
Gene

Expression
0.0 0.0 0 0 Gene

Expression
1.55 0.94 1 7

MRI 0.0 0.0 0 0 MRI 0.0 0.0 0 0
C—MRI Frequencies D—Total Frequencies

Domain Average Standard
Deviation Minimum Maximum Domain Average Standard

Deviation Minimum Maximum

ADNIMERGE 0.0 0.0 0 0 ADNIMERGE 5.48 5.83 1 23
Gene

Expression
0.0 0.0 0 0 Gene

Expression
1.55 0.94 1 7

MRI 2457.08 4397.99 1 11957 MRI 2457.08 4397.99 1 11,957
Summary of the numbers of correlated features based on the maximally significant comparisons (p-value ≤ 5 × 10−324). Interestingly, when
applying a maximally significant α, features were only strongly correlated with other features in their same domain.

3.1. Domain-Specific Correlation Analysis Results

First, we report the number of times ADNIMERGE features correlated with each
domain-specific feature in the dataset, after correcting for multiple testing using a Bonfer-
roni α value (Table 3A). Although many gene expression probes were not highly correlated
with ADNIMERGE features (mean = 0.28± 5.52), gene expression for ubiquitin specific pep-
tidase 9 Y-linked (USP9Y; probe set: 11725293_at) was correlated with the 189 ADNIMERGE
features. In contrast, many ADNIMERGE features were highly correlated with other AD-
NIMERGE features (mean = 129.49 ± 88.06 highly correlated comparisons per feature).
The volume (cortical parcellation) of right fusiform (ADNIMERGE header: ST85CV) was
correlated with 346 ADNIMERGE features, which was the highest frequency. Similarly, MRI
features displayed high correlation with many ADNIMERGE data (mean = 9.31 ± 20.09),
and one MRI feature was highly correlated with 188 ADNIMERGE features.

Next, we report how many gene expression features correlate with each domain-
specific feature using a Bonferroni corrected α (Table 3). For ADNIMERGE features, the
patient date of birth correlates with the most Affymetrix probes (616 gene probes), and the
mean number of significant comparisons per feature was 11.91 ± 30.9. The MRI dataset
also contained many significant correlations (mean = 7.87 ± 19.66), and one feature from
the MRI autoencoder correlated with 149 gene expression values. Gene expression features,
on average, strongly correlated with 6139.72 ± 6195.45 other gene expression probes.
The probe expression levels for adducin 2 (ADD3; probe set: 11721606_a_at) are strongly
correlated with the most other gene probes (24,588 probes), which consists of 51.058% of
the total number of probes in the dataset.

Finally, we report the number of significant correlations with the MRI-extracted
features from the autoencoder (Table 3). A single gene expression probe for the X-inactive
specific transcript (XIST) non-protein coding region (probe set: 11757857_s_at) was strongly
correlated with 119,556 MRI features, and gene probes, on average, were highly correlated
with 140.05 ± 3642.09 MRI features. The ADNIMERGE features were correlated with
6988.04 ± 19,170.23 MRI features and patient sex had the highest number of significant
correlations with MRI features (145,780 significant correlations). MRI to MRI feature
redundancy is even higher, with a single MRI feature being correlated with 347,944 other
MRI features, and each MRI feature had significant feature redundancy (minimum = 81;
mean = 141,348.57 ± 69,866.96).

Similar analyses were conducted on the total frequencies of feature redundancy
(Table 3) and using the maximum significance threshold (Table 4).

3.2. Subset Stratification Analysis Results

Tables S3–S7 contain the summary statistics for the five subsets. Differences in these
tables compared to Table 4 indicate that comparisons that were maximally significant using
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the entire data set (all 743 patients) were not maximally significant for a given subset. We
found that the male, female, and AD subsets each exhibited fewer maximally significant
feature comparisons than found in the complete correlation analysis (compare Tables S3,
S4, and S7 with Table 4). Features lost an average of 1391.485 ± 2835.093 features that they
were maximally correlated with (i.e., based on the maximally significant α of 5 × 10−324)
after correlation analysis on the stratified male subset. Likewise, features lost an average of
1323.918 ± 2694.103 maximally significant correlations after analysis on the female subset.
Finally, an average of 2343.442 ± 4325.865 correlations per feature were lost using the
AD subset. Conversely, for the healthy control and mild cognitive impairment subsets,
all feature comparisons maintained maximum significance (compare Tables S5 and S6 to
Table 4). While it is a small amount, some of the loss in the AD subset is attributed to the
sub-setting itself due to features in the subset no longer having more than one unique value
or no longer satisfying the assumptions of our statistical tests. Tables S8–S12 (where each
table represents a different subset) show that the sub-setting alone resulted in no loss of
maximally significant comparisons except in the AD subset since the AD subset table is
the only one with values that differ from Table 4. Specifically, features lost an average of
2.643 ± 0.005 correlations due to the AD subset stratification alone (i.e., the small sample
size resulted in fewer possible correlation comparisons).

3.3. Feature-Correlation Mappings

We created a mapping from each gene expression and ADNIMERGE feature to a list
of gene expression and ADNIMERGE features with which they are strongly correlated
(based on the Bonferroni corrected α). Table S13 shows the computational resources
used to conduct these comparisons. There were 1,214,628,828 comparisons (0.342% of all
comparisons) that involved only ADNIMERGE features or gene expression features and our
mapping took up 1.87 gigabytes of disk space. We excluded MRI features from the mapping
because autoencoder features do not have clear biological significance and filesharing size
restraints would preclude including those comparisons online (~550 gigabytes of disk
space). The ADNIMERGE and gene mappings are available as a downloadable Python
pickle file. We chose the pickle file format because it facilitates easy integration with Python
scripts and research pipelines. This file is available online at: https://drive.google.com/fil
e/d/1uRuT6rhDVDeeBuRYPif3Ate3u1UVs-hO/view?usp=sharing.

4. Discussion

Our results demonstrate a high amount of feature redundancy in the ADNI dataset
that should be considered when using the dataset for machine learning. While we make
no claims about feature correlation in other large-scale databanks, the significant feature
correlation in ADNI suggests that this issue might be more widespread than previously
thought and should be considered before performing large-scale data mining. For example,
a single gene expression feature alone could replace more than half the gene expression
values because it is highly correlated with expression in each of those genes. Thousands
of MRI features can be replaced by ADNIMERGE or gene expression features, and the
MRI features themselves can be further reduced. A single MRI feature can replace up to
43.844% of the MRI domain, indicating that we could almost double the MRI compression
ratio. This redundancy may inhibit the types of analyses possible in research laboratories
with limited computational resources. Furthermore, laboratories using the ADNI features
for large-scale data analyses are likely to waste computational time and resources if they
do not properly deal with feature redundancy within the dataset. Beyond that, models
analyzing redundant ADNI data are expected to perform and generalize poorly because
of the curses of dimensionality [30] and overfitting [31]. To help alleviate these issues,
we provided future researchers with a mapping of highly correlated features within the
ADNIMERGE and gene expression domains. We recommend that researchers using the
ADNIMERGE and gene expression data download our mapping file, and we inform
researchers using the MRI features of their high redundancy. Future work can include

https://drive.google.com/file/d/1uRuT6rhDVDeeBuRYPif3Ate3u1UVs-hO/view?usp=sharing
https://drive.google.com/file/d/1uRuT6rhDVDeeBuRYPif3Ate3u1UVs-hO/view?usp=sharing
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further reducing the size of the MRI domain using a 1D autoencoder, as compared to the
2D autoencoder we used to perform the initial reduction. This architectural change would
likely be useful because while 2D convolutional autoencoders compress 2-dimensional
data (e.g., MRIs), 1D convolutional autoencoders compress 1-dimensional data (e.g., our
extracted MRI features).

Another benefit of our correlation analysis is that it shows the possibility of AD-
related features, which are more costly to collect, being replaced by less costly features. For
example, collecting CSF biomarkers requires intrusive lumbar punctures [32], and certain
cognitive tests (i.e., Mini-Mental State Examination, Alzheimer’s Disease Assessment Scale-
Cognitive Subscale, Frontal Assessment Battery, etc.) are time-intensive and can be stressful
for patients [33]. If such non-ideal features are strongly correlated with more palatable
features, they can be replaced by data that is easier to collect. Gene expression and MRI
features are strongly correlated with hundreds of ADNIMERGE features. There are varying
costs in obtaining these ADNIMERGE features (e.g., time, emotional toll, and money).
If such biomarkers or tests were more demanding than a relatively simple blood [14] test
or MRI scan, they could be replaced by other highly correlated features that are less costly.
Doing so may decrease the burden on both patients and caretakers by limiting the number
of tests performed or surveys taken, as well as the amount of paperwork that needs to be
completed. Additionally, this knowledge may decrease the overall costs of conducting a
clinical trial or establishing a cohort if a specific test is no longer required because it does
not provide additional data beyond other testing.

Furthermore, our analyses revealed issues with the ADNI data that obstruct data
analysis. First, there were several features we discovered to be highly correlated with
others but were merely meta-data. These features include the date a measurement was
recorded, the version of ADNI when the measurement took place, or identification numbers
such as bar-code, sample-identification, lonis ID, image UID etc. While these features serve
an important function in the data, they do not have biological or cognitive meaning.
We recommend that such features are labeled and distinguished, so that computational
researchers can programmatically identify them in their scripts and separate them from the
rest of the data. We recommend the same for columns in ADNI tables that appear to be
notes taken by the data recorders. ADNIMERGE could include a two-column table that
maps features to their designation (e.g., metadata, biomarker, MRI, etc.).

Another issue we identified was that certain features were maximally correlated with
other features that had only slight deviations in their names and are likely duplicates in
the dataset. For example, Table 5 shows that two features representing intracranial volume
had exactly equal results but different header names.

Table 5. Example of Features with Identical Results but Slightly Different Names.

Feature ADNIMERGE
Frequency

Gene Expression
Frequency MRI Frequency Total Frequency Domain

ICV 265 84 141,676 142,025 ADNIMERGE
ICV.BL 265 84 141,676 142,025 ADNIMERGE

We suspect that such features are equivalent, but they have different header names
when appearing in two different tables. If multiple tables contain columns with the same
features, we recommend that such columns are correctly labeled by having the exact same
header name across all tables in which they appear.

We recognize that the ADNI dataset contains longitudinal data that may result in
different levels of feature correlation at different time points. We chose the last recorded
time series datapoint for each feature to ensure that analyzed features were collected at
similar points in disease progression. Since we conducted subtype analyses that show
no difference in correlation between sex or cognitive decline, feature correlation can be
interpreted broadly at the population level. However, we recognize that certain limitations
in the ADNI dataset (e.g., age at first patient measurement, incomplete time series data, im-
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putation, etc.) may limit our ability to detect changes in feature correlation for individuals.
Additionally, deviations from feature correlation across a time series for an individual may
warrant further investigation for its disease association.

The loss of significant statistical tests performed on the subsets may be partially
a result of the reduced sample size. Patients with AD represent the smallest subset,
therefore having the lowest statistical power, which may explain why the AD subset had
the largest drop in significant tests. However, neither the healthy control subset nor the
mild cognitive impairment subset experienced any loss of significant comparisons despite
being smaller than the male subset, which did lose significant comparisons. This retention
of comparison frequencies suggests that other factors beyond sample size contribute to
the loss of statistically significant comparisons and that some feature comparisons lose
significance when stratified by sex. Similarly, our results show that comparisons become
less significant when stratified by CDR and performed on the AD subset, which does not
occur in the control or mild cognitive impairment subsets. The reduction in features that
are testable in each subset contributes slightly to this reduction in significant comparisons
but does not account for all differences (see Table S12). Therefore, not all strongly correlated
feature pairs remain correlated in each CDR subset.

5. Conclusions

Our analyses contribute significantly to future AD research by exploring feature
correlation within the ADNI dataset. We identified many non-ic ADNI features that are
highly correlated with each other and can be replaced when building large data models.
We provide a template for constructing a convolutional autoencoder capable of extracting
tabular features from MRIs and inform future researchers of the redundancy among these
MRI features. Additionally, we propose solutions to address feature redundancy within
the non-MRI features by downloading our feature redundancy tables. We validated these
correlations by sub-setting the ADNI dataset and found that most highly correlated features
remain highly correlated in each stratified subset. Additionally, we propose that researchers
who design clinical trials or testing for AD should be mindful of feature redundancy to
reduce the unnecessary testing burden on patients and caregivers when the tests do not
elicit additional information. We anticipate that this research will help guide researchers
using machine learning on the ADNI dataset to take into account feature redundancy in
the future.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/1
0.3390/genes12111661/s1, Supplementary Figures: Figure S1: Steps for Creating the Raw Data Set
for the ADNIMERGE Domain; Figure S2: Diagram Displaying the Creation of the Convolutional
Autoencoders. Supplementary Tables: Table S1: Significant Comparison Frequencies For Features
By Bonferroni Alpha (ADNIMERGE Features Only); Table S2: Significant Comparison Frequencies
For Features By Maximum Alpha (ADNIMERGE Features Only); Table S3: Comparison Frequencies
of The Subset Analysis (Male Subset); Table S4: Comparison Frequencies Of The Subset Analysis
(Female Subset); Table S5: Comparison Frequencies Of The Subset Analysis (CDR = 0 Subset); Table
S6: Comparison Frequencies Of The Subset Analysis (CDR = 0.5 Subset); Table S7: Comparison
Frequencies Of The Subset Analysis (CDR ≥ 1.0 Subset); Table S8: Maximally-significant correlations
with sufficient data to perform subsetting: Males; Table S9: Maximally-significant correlations with
sufficient data to perform subsetting: Females; Table S10: Maximally-significant correlations with
sufficient data to perform subsetting: CDR = 0; Table S11: Maximally-significant correlations with
sufficient data to perform subsetting: CDR = 0.5; Table S12: Maximally-significant correlations with
sufficient data to perform subsetting: CDR ≥ 1.0; Table S13: Resource Usage.

Author Contributions: Conceptualization, J.B.M.; data curation, D.O.S., K.M.W.; formal analysis,
E.D.H., B.B.G., D.O.S. and J.B.M.; funding acquisition, M.T.W.E., J.S.K.K. and J.B.M.; investiga-
tion, E.D.H., M.W.H., D.O.S., K.M.W. and J.B.M.; methodology, E.D.H., B.B.G. and J.B.M.; project
administration, M.T.W.E., J.S.K.K. and J.B.M.; resources, M.T.W.E., J.S.K.K., Alzheimer’s Disease
Neuroimaging Initiative ADNI, ADMC and J.B.M.; software, E.D.H., B.B.G., D.O.S. and K.M.W.; su-
pervision, M.T.W.E., J.S.K.K. and J.B.M.; validation, E.D.H., M.W.H. and J.B.M.; visualization, E.D.H.;

https://www.mdpi.com/article/10.3390/genes12111661/s1
https://www.mdpi.com/article/10.3390/genes12111661/s1


Genes 2021, 12, 1661 11 of 12

writing—original draft, E.D.H. and J.B.M.; writing—review & editing, E.D.H., M.W.H., B.B.G., D.O.S.,
K.M.W., M.T.W.E., J.S.K.K. and J.B.M. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the BrightFocus Foundation [A2020118F to Miller] and
the National Institutes of Health [1P30AG072946-01 to the University of Kentucky Alzheimer’s
Disease Research Center]. Data collection and sharing for this project was funded by the National
Institute on Aging [R01AG046171, RF1AG051550 and 3U01AG024904-09S4 to the Alzheimer’s Disease
Metabolomics Consortium].

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All custom scripts for processing and analyzing our data are available
online at: https://github.com/jmillerlab/ADNI_Correlation. The tables containing the numbers of
correlated features for each feature in our constructed data set are available online at: Bonferroni
corrected α: https://github.com/jmillerlab/ADNI_Correlation/blob/main/data/sig-freqs/bonf
erroni-sig-freqs.csv. Maximally significant α: https://github.com/jmillerlab/ADNI_Correlation
/blob/main/data/sig-freqs/maximum-sig-freqs.csv. The pickle file containing the mapping of
non-MRI features to the non-MRI features that they are correlated with is available online at:
https://drive.google.com/file/d/1uRuT6rhDVDeeBuRYPif3Ate3u1UVs-hO/view?usp=sharing.

Acknowledgments: We thank the donors to the BrightFocus Foundation for their contributions
to this research. We also acknowledge the Sanders-Brown Center on Aging at the University of
Kentucky, Brigham Young University, and the Office of Research Computing at Brigham Young Uni-
versity for their institutional support and resources. Data collection and sharing for this project was
funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health
Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012).
ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging
and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s
Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen;
Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli
Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd. and its affiliated company Genentech,
Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Develop-
ment, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck;
Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies;
Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical
Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing
funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the
Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the
Northern California Institute for Research and Education, and the study is coordinated by the
Alzheimer’s Therapeutic Research Institute at the University of Southern California. ADNI data are
disseminated by the Laboratory for Neuro Imaging at the University of Southern California. Data
used in the preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private
partnership, led by Principal Investigator Michael W. Weiner. The primary goal of ADNI has been to
test whether serial magnetic resonance imaging (MRI), positron emission tomography (PET), other
biological markers, and clinical and neuropsychological assessment can be combined to measure the
progression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). For up-to-date
information, see www.adni-info.org.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhang, R.; Simon, G.; Yu, F. Advancing Alzheimer’s Research: A Review of Big Data Promises. Int. J. Med. Inform. 2017, 106,

48–56. [CrossRef]
2. Jack, C.R.; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Feldman, H.H.; Frisoni, G.B.; Hampel, H.; Jagust, W.J.; Johnson, A.;

Knopman, D.S.; et al. A/T/N: An unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology 2016,
87, 539–547. [CrossRef] [PubMed]

https://github.com/jmillerlab/ADNI_Correlation
https://github.com/jmillerlab/ADNI_Correlation/blob/main/data/sig-freqs/bonferroni-sig-freqs.csv
https://github.com/jmillerlab/ADNI_Correlation/blob/main/data/sig-freqs/bonferroni-sig-freqs.csv
https://github.com/jmillerlab/ADNI_Correlation/blob/main/data/sig-freqs/maximum-sig-freqs.csv
https://github.com/jmillerlab/ADNI_Correlation/blob/main/data/sig-freqs/maximum-sig-freqs.csv
https://drive.google.com/file/d/1uRuT6rhDVDeeBuRYPif3Ate3u1UVs-hO/view?usp=sharing
https://drive.google.com/file/d/1uRuT6rhDVDeeBuRYPif3Ate3u1UVs-hO/view?usp=sharing
www.fnih.org
www.adni-info.org
http://doi.org/10.1016/j.ijmedinf.2017.07.002
http://doi.org/10.1212/WNL.0000000000002923
http://www.ncbi.nlm.nih.gov/pubmed/27371494


Genes 2021, 12, 1661 12 of 12

3. Lam, B.; Masellis, M.; Freedman, M.; Stuss, D.T.; Black, S.E. Clinical, imaging, and pathological heterogeneity of the Alzheimer’s
disease syndrome. Alzheimer’s Res. Ther. 2013, 5, 1. [CrossRef] [PubMed]

4. Ritchie, K.; Carrière, I.; Berr, C.; Amieva, H.; Dartigues, J.F.; Ancelin, M.L.; Ritchie, C.W. The clinical picture of Alzheimer’s
disease in the decade before diagnosis: Clinical and biomarker trajectories. J. Clin. Psychiatry 2016, 77. [CrossRef]

5. Ang, T.F.; An, N.; Ding, H.; Devine, S.; Auerbach, S.H.; Massaro, J.; Joshi, P.; Liu, X.; Liu, Y.; Mahon, E.; et al. Using data science to
diagnose and characterize heterogeneity of Alzheimer’s disease. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2019, 5, 264–271.
[CrossRef] [PubMed]

6. Fiandaca, M.S.; Mapstone, M.E.; Cheema, A.K.; Federoff, H.J. The critical need for defining preclinical biomarkers in Alzheimer’s
disease. Alzheimers Dement 2014, 10, S196–S212. [CrossRef]

7. Forman, G.; Zhang, B. Distributed data clustering can be efficient and exact. ACM SIGKDD Explor. Newsl. 2000, 2, 34–38.
[CrossRef]

8. Hünich, D.; Müller-Pfefferkorn, R. Managing large datasets with iRODS—A performance analysis. In Proceedings of the
International Multiconference on Computer Science and Information Technology, Wisla, Poland, 18–20 October 2010.

9. Ur Rehman, M.H.; Liew, C.S.; Abbas, A.; Jayaraman, P.P.; Wah, T.Y.; Khan, S.U. Big data reduction methods: A survey. Data Sci.
Eng. 2016, 1, 265–284. [CrossRef]

10. Schadt, E.E.; Linderman, M.D.; Sorenson, J.; Lee, L.; Nolan, G.P. Computational solutions to large-scale data management and
analysis. Nat. Rev. Genet. 2010, 11, 647–657. [CrossRef]

11. Basney, J.; Livny, M.; Mazzanti, P. Utilizing widely distributed computational resources efficiently with execution domains.
Comput. Phys. Commun. 2001, 140, 246–252. [CrossRef]

12. Sharma, N.; Saroha, K. Study of dimension reduction methodologies in data mining. In Proceedings of the International
Conference on Computing, Communication Automation, Greater Noida, India, 15–16 May 2015.

13. Saeys, Y.; Inza, I.; Larranaga, P. A review of feature selection techniques in bioinformatics. Bioinformatics 2007, 23, 2507–2517.
[CrossRef]

14. Chen, Z.; Wu, C.; Zhang, Y.; Huang, Z.; Ran, B.; Zhong, M.; Lyu, N. Feature selection with redundancy-complementariness
dispersion. Knowl.-Based Syst. 2015, 89, 203–217. [CrossRef]

15. Yu, L.; Liu, H. Feature selection for high-dimensional data: A fast correlation-based filter solution. In Proceedings of the 20th
International Conference on Machine Learning (ICML-03), Washington, DC, USA, 21–24 August 2003.

16. Miller, J.B.; Kauwe, J.S. Predicting Clinical Dementia Rating Using Blood RNA Levels. Genes 2020, 11, 706. [CrossRef]
17. ADNIMERGE: Alzheimer’s Disease Neuroimaging Initiative. Available online: https://adni.bitbucket.io (accessed on

26 September 2021).
18. Tipping, M.E. Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 2001, 1, 211–244.
19. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.;

Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
20. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:

An Imperative Style, High-Performance Deep Learning Library. Adv. Neural Inf. Process. Syst. 2019, 32, 8026–8037.
21. Mason, D. SU-E-T-33: Pydicom: An open source DICOM library. Med. Phys. 2011, 38, 3493. [CrossRef]
22. Pienaar, R. 2020. Available online: https://github.com/FNNDSC/med2image (accessed on 26 September 2021).
23. Bradski, G. The OpenCV Library. Dr. Dobb’s J. Softw. Tools 2000, 25, 120–123.
24. Patro, S.; Sahu, K.K. Normalization: A preprocessing stage. arXiv 2015, arXiv:1503.06462. [CrossRef]
25. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
26. D’AGOSTINO, R.; Pearson, E.S. Tests for departure from normality. Empirical results for the distributions of b2 and

√
b. Biometrika

1973, 60, 613–622. [CrossRef]
27. Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.;

Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [CrossRef]
28. Morris, J.C. The clinical dementia rating (cdr): Current version and. Young 1991, 41, 1588–1592.
29. Besser, L.M.; Mock, C.; Teylan, M.A.; Hassenstab, J.; Kukull, W.A.; Crary, J.F. Differences in cognitive impairment in primary

age-related tauopathy versus Alzheimer disease. J. Neuropathol. Exp. Neurol. 2019, 78, 219–228. [CrossRef]
30. Kuo, F.Y.; Sloan, I.H. Lifting the curse of dimensionality. Not. AMS 2005, 52, 1320–1328.
31. Liu, R.; Gillies, D.F. Overfitting in linear feature extraction for classification of high-dimensional image data. Pattern Recognit.

2016, 53, 73–86. [CrossRef]
32. Veerabhadrappa, B.; Delaby, C.; Hirtz, C.; Vialaret, J.; Alcolea, D.; Lleó, A.; Fortea, J.; Santosh, M.S.; Choubey, S.; Lehmann, S.

Detection of amyloid beta peptides in body fluids for the diagnosis of alzheimer’s disease: Where do we stand? Crit. Rev. Clin.
Lab. Sci. 2020, 57, 99–113. [CrossRef]

33. Oyama, A.; Takeda, S.; Ito, Y.; Nakajima, T.; Takami, Y.; Takeya, Y.; Yamamoto, K.; Sugimoto, K.; Shimizu, H.; Shimamura, M.;
et al. Novel method for rapid assessment of cognitive impairment using high-performance eye-tracking technology. Sci. Rep.
2019, 9, 12932. [CrossRef]

http://doi.org/10.1186/alzrt155
http://www.ncbi.nlm.nih.gov/pubmed/23302773
http://doi.org/10.4088/JCP.15m09989
http://doi.org/10.1016/j.trci.2019.05.002
http://www.ncbi.nlm.nih.gov/pubmed/31304232
http://doi.org/10.1016/j.jalz.2014.04.015
http://doi.org/10.1145/380995.381010
http://doi.org/10.1007/s41019-016-0022-0
http://doi.org/10.1038/nrg2857
http://doi.org/10.1016/S0010-4655(01)00276-4
http://doi.org/10.1093/bioinformatics/btm344
http://doi.org/10.1016/j.knosys.2015.07.004
http://doi.org/10.3390/genes11060706
https://adni.bitbucket.io
http://doi.org/10.1118/1.3611983
https://github.com/FNNDSC/med2image
http://doi.org/10.17148/IARJSET.2015.2305
http://doi.org/10.1093/biomet/60.3.613
http://doi.org/10.1038/s41592-019-0686-2
http://doi.org/10.1093/jnen/nly132
http://doi.org/10.1016/j.patcog.2015.11.015
http://doi.org/10.1080/10408363.2019.1678011
http://doi.org/10.1038/s41598-019-49275-x

	Introduction 
	Materials and Methods 
	ADNIMERGE Domain 
	Gene Expression Domain 
	MRI Domain 
	Combining All Domains 
	Correlation Analysis 
	Subset Stratification Analysis 

	Results 
	Domain-Specific Correlation Analysis Results 
	Subset Stratification Analysis Results 
	Feature-Correlation Mappings 

	Discussion 
	Conclusions 
	References

